
Journal of Global Optimization 21: 265–288, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

265

On solving the maximum clique problem

ANTONINA KUZNETSOVA and ALEXANDER STREKALOVSKY
Institute of System Dynamics and Control Theory SB of RAS, Lermontov Str., 134, Irkutsk-33,
664033, Russia
E-mail: kuznet@icc.ru and strekal@icc.ru

Abstract. The Maximum Clique Problem (MCP) is regarded here as the maximization of an indef-
inite quadratic form over the canonical simplex. For solving MCP an algorithm based upon Global
Optimality Conditions (GOC) is applied. Furthermore, each step of the algorithm is analytically
investigated and tested. The computational results for the proposed algorithm are compared with
other Global Search approaches.

Key words: d.c. maximization, global optimality conditions, local search, linearized problem, global
search algorithm

1. Introduction

In this paper we develop an approach proposed earlier for continuous nonconvex
problems (Strekalovsky 1993, 1997, 2000; Strekalovsky and Tsevendorj, 1998;
Kuznetsova et al., 1999) and apply it for solving the well-known combinatorial
problem, the Maximum Clique Problem (MCP).

We follow here the continuous formulation of MCP due to Motzkin and Strauss
(1965), which was regularized by Bomze (1997). This allows us to present MCP as
an indefinite quadratic maximization problem over the canonical simplex and then
to apply the so-called Global Optimality Conditions (GOC) for d.c. maximiza-
tion problem (Strekalovsky 1993, 1997, 2000; Strekalovsky and Tsevendorj, 1998;
Kuznetsova et al., 1999) .

In order to take into account the structure of the problem we propose an ana-
lytical investigation of the steps of Global Search Algorithm (GSA). The results of
computational experiments for the proposed approach show its competitive ability.

The rest of the paper is organized as follows.
After the statement of the problem and recalling GOC in Section 3 we present

GSA for general d.c. maximization problem. In Section 4 we study the Linearized
Problem which is one of the corner-stones of our approach.

In Section 5 we investigate three types of local search and choose the most
suitable for our needs.

After developing the modulus of GSA we move to a preliminary testing of the
derived global search algorithm called �-strategy.

266 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Finally in Section 7 the analysis of preceding computational experiments and
additional analytical investigation enabled us to derive an almost discrete version
of �-algorithm, the so-called �D-algorithm.

The latter version allows to solve DIMACS test-examples of MCP of cardinality
up to 800 within a reasonable CPU-time. Moreover in Sanchis’ examples, �D-
algorithm found cliques of size 1.5–2 times as large as other known methods.

The authors are indebted to anonymous referees for very helpful remarks and
suggestions as well as for pertinant corrections in English.

2. Problem’s statement and GOC.

Let G = G(V,E) be a simple undirected graph with vertex set V = {1, ..., n}
and set of edges E. In addition assume that the graph and its complement have no
isolated vertices.

A subset C of V is called a clique if every pair of vertices in C is joined by
an edge. MCP is the problem of finding a clique C of the maximum cardinality.
Due to Motzkin and Straus (1965), MCP can be stated as the following indefinite
quadratic programming problem:

FG(x) =
∑

(i,j)∈E
xixj = 1

2
〈x,AGx〉 ↑ max,

x ∈ S = {x = (x1, ..., xn)
T :

n∑
1

xi = 1, xi � 0, i = 1, .., n},

(2.1)

where AG is the adjacency matrix of G.
It is well-known that G has a maximum clique C of cardinality k = (1−2α)−1,

where α = max(FG, S). This maximum can be attained by setting xi = 1/k, where
i ∈ C, and xi = 0 if i /∈ C.

Nevertheless, a global solution to (2.1) is not directly related to a maximum
clique (Horst et al., 1995). For instance, Pelillo and Jagota (1995), gave charac-
terizations of some ‘spurious’ or ‘infeasible’ solutions. Therefore, Bomze (1995)
gave a regularization of Problem (2.1) replacing the goal function in (2.1) by the
quadratic function with the matrix A = AG + 1

2In, where In is the identity matrix.
Then a global solution x∗ to the following regularized problem:

F(x) = 1

2
〈x,Ax〉 ↑ max, x ∈ S, (P)

allows to define the corresponding maximum clique as follows:

C = {i ∈ V : x∗
i > 0}.

Consider a more general (than (P)) d.c. maximization problem:

F(x) = f (x) − g(x) ↑ max, x ∈ D, (2.2)

where f , g are convex functions over a convex set D ⊂ Rn.

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 267

THEOREM 1. (Strekalovsky, 1997, 2000). Let z ∈ D be a global solution to (2.2)
(z ∈ Sol(2.2)), and ζ = F(z) = f (z)−g(z). Then for every pair (y, β) ∈ Rn×R

belonging to the boundary of the epigraph of the function (f (·) − ζ), i.e.

f (y) − β = ζ, (2.3)

and such that

y ∈ D, g(y) � β � sup(g,D), (2.4)

the following variational inequality holds

g(x) − β � 〈∇f (y), x − y〉 ∀x ∈ D. (2.5)

If in addition the following assumption takes place

∃v ∈ D : F(v) < F(z), (H)

then conditions (2.3)–(2.5) become sufficient for z ∈ D to be a global solution
to (2.2).

Proof. Consider only the necessity’s proof. If the conditions (2.3)–(2.5) fail, i.e.
there exists a triplet (y, β, u), such that

β − f (y) = F(z), u ∈ D,

g(u) < β + 〈∇f (y), u − y〉
then due to convexity of f (·) we have

g(u) < β − f (y) + f (u) = f (u)− F(z),

whence F(u) < F(z). The latter contradicts the fact, that z is a solution of (2.2).
The proof of sufficiency can be found in (Strekalovsky, 1997, 2000). �

Note, that GOC is related to the classical extremum theory (Strekalovsky, 1997,
2000). Furthermore, (2.5) suggests to consider a family of convex Linearized Prob-
lems:

g(x) − 〈∇f (y), x〉 ↓ min x ∈ D; (PL)

depending on the parameters (y, β) verifying (2.3)–(2.4).
Besides, GOC possesses the so-called Algorithmic Property (AP). The latter

means that, if (2.3)–(2.5) are violated then there exists a procedure for constructing
a better feasible point (see the proof above).

Exploiting this AP, one gets a Global Search Algorithm (GSA) for (2.2) de-
scribed in Strekalovsky, (2000) and called ‘�-strategy’. Below we present a ver-
sion of �-strategy appropriate to Problem (P), and in the following sections we
consider the most important parts of the Algorithm.

268 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

3. D.C. decomposition of Problem (P) and Global Search Algorithm

It is well-known that an indefinite matrix A can be represented as a difference of
two positive definite matrices:

A = A1 − A2. (3.1)

As a consequence, Problem (P) turns out to be a particular case of d.c. maxim-
ization problem (2.2), where

f (x) = 1

2
〈x,A1x〉 , g(x) = 1

2
〈x,A2x〉 . (3.2)

One of well-known ways to present the matrix A in the form (3.1) is as follows

A = (A + µIn) − µIn,

where µ > 0 is rather large.
We propose another decomposition of A more appropriate for the structure of

the matrix A = AG + 1
2In. Let di = ∑n

j=1 a
G
ij be the degree of the vertex i w.r.t.

the graph G. Then

F(x) = 1

2
〈x,Ax〉 = 1

4

n∑
i=1

x2
i + 1

2

∑
(i,j)∈E

xixj

= 1

4

 n∑

i=1

x2
i +

∑
(i,j)∈E

(xi + xj)
2

− 1

2

n∑
i=1

dix
2
i ,

where

1 � di � n − 2, i = 1, ..., n, (3.3)

provided that there is no isolated vertex.
So, we obtained a d.c. decomposition of the goal function F(·) where both

functions

f (x) = 1

4

 n∑

i=1

x2
i +

∑
(i,j)∈E

(xi + xj)
2

 , (3.4)

g(x) = 1

2

n∑
i=1

dix
2
i (3.5)

are strongly convex.
It is clear that the decomposition F(x) = f (x) − g(x) corresponds to the

decomposition (3.1) of the matrix A, where

A2 = diag{d1, ...dn}, A1 = A + A2. (3.6)

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 269

Now let us describe a Global Search Algorithm exploiting AP of GOC (see also
[12]-[15]). Denote β− := inf(g, Sn), β+ := sup(g, Sn). Let a point x0 ∈ S and a
number sequence {εk} , εk > 0, k = 0, 1, 2, . . . , εk ↓ 0 (k → ∞) are given.

�-strategy.

Step 0. Set k := 0, xk := x0.

Step 1. Starting from xk ∈ D obtain zk ∈ D by one of local search methods for
Problem (P), so that zk is an εk-stationary point in (P). Set ζk := F(zk).

Step 2. Choose some β ∈ [β−, β+
]
. In particular, one can begin with β0 = g(zk).

Step 3. Construct an approximation

Ak(β) = {
y1, ..., yNk / f

(
yi
) = β + ζk, i = 1, Nk, Nk = Nk(β)

}
.

Step 4. Introduce the set Ik = Ik(β) = {i ∈ {1, ..., Nk} / g(yi) � β}.
Step 5. For every i ∈ Ik solve the Linearized Problem

g(x) − 〈∇f (yi), x〉 ↓ min, x ∈ S. (PLi)
Let ui be an εk-solution of (PLi).

Step 6. For i ∈ Ik starting at the point ui find a stationary point vi ∈ S by a local
search method.

Step 7. For every i ∈ Ik find a point wi, f (wi) = β + ζk, such that〈∇f (wi), vi − wi
〉+ εk � sup

y

{〈∇f (y), vi − y〉 / f (y) = β + ζk}.

Step 8. Set

ηk(β) = 〈∇f (wj), vj − wj
〉+ β − g(vj) = (3.7)

= max
i∈I

{〈∇f (wi), vi − wi
〉+ β − g(vi)}. (3.8)

Step 9. If ηk(β) > 0, set xk+1 := vj and loop to Step 1.
Step 10. If ηk(β) � 0, set β := β + �β and go to Step 3.
Step 11. Stop, if ηk(β) � 0 for all β ∈ [β−, β+] (i.e maximization of ηk(β) over

[β−, β+] is finished) and if εk � δ, where δ is a given tolerance. �
REMARK 1. It can be seen that Step 6 is new comparing with the versions pro-
posed in Strekalovsky (1993, 2000), Strekalovsky and Tsevendorj (1979) and Kuznet-
sova et al., (1999).

4. Linearized Problem’s Solving

Consider Problem (PLi) where f (yi) = β+ζ, β ∈ [β−, β+], ζ = F(z), where
i ∈ {1, . . . , Nk} and g(·) is defined in (3.5). Set y = yi and denote

r = (r1, ...rn)
T , r = ∇f (y).

270 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Assume, in addition, that

r1 � ... � ri−1 � ri � ... � rn. (4.1)

So, Problem (PLi) takes the form:

h(x) = 1
2

n∑
1

dix
2
i −

n∑
1

rixi ↓ min,

x ∈ S = {x ∈ Rn /

n∑
1

xi = 1 xi � 0, i = 1, . . . , n}.

(4.2)

Recall that due to (3.3) the objective function of (4.2) is strongly convex, and we
might apply the standard methods of convex quadratic programming. However, in
order to find the unique solution of (4.2) in a fast way, we prefer to use a special
finite solving method. Let us begin with

LEMMA 1. Let u = (u1...un) be the solution to (4.2) (u ∈ Sol(4.2)). Then only
one of the two following alternatives takes place:

(a) ui > 0 for every i = 1, n;
(b) there exists a number p, 1 � p < n, such that

ui > 0 for every i, 1 � i � p,

ui = 0, when i > p.

Proof. Suppose, that there exist some numbers s and t , such that s < t , but
us = 0, ut > 0. Since the problem (4.2) is convex and regular, from KKT-theorem
one deduces

dtut − rt + µ = 0,
− rs − µs + µ = 0.

}

Since rs � rt , one gets

µ = µs + rs � µs + rt = µs + dtut + µ

or µs + dtut � 0, which is wrong, since µs � 0, dt > 0, ut > 0. �
LEMMA 2. If ri = rj 1 � i, j � n, then only one of the two alternatives takes
place:

(a) ui > 0, uj > 0;
(b) ui = uj = 0.

Proof. Due to ri = rj the case ui > 0, uj = 0 is equivalent to the case ui = 0,
uj > 0 which is impossible according to Lemma 1. �

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 271

In order to develop the solving method for Linearized Problem (4.2), one needs
to consider some auxiliary relaxed problems depending on the integer parameter
l, 1 � l � n :

hl(x) = 1
2

l∑
1

dix
2
i −

l∑
1

rixi ↓ min,

l∑
1

xi = 1.

(4.3)

Let ul = (ul1, ..., u
l
l) ∈ Rl be a solution to (4.3) . Applying the Lagrange rule

to (4.3) one gets for i = 1, . . . , l :

uli =

l∑
s=1

(ri − rs)/ds + 1

di

l∑
s=1

1/ds

. (4.4)

LEMMA 3. Only one of the two alternatives takes place:
(a) uli > 0 for every i = 1, . . . , l;
(b) one can find a number p = p(l) < l such that

uli > 0 f or 1 � i � p,

uli � 0, when i > p.

Proof. The representation (4.4) is deduced from

uli = (ri − µ)/di, i = 1, . . . , l,

where µ is the Lagrange multiplier in Problem (4.3). If j < l and ulj � 0, then
µ � rj , since di � 1, i = 1, . . . n. Hence, due to (4.1) µ � ri and uli � 0 for all
i : j < i � l. �

Now we are able to describe the solution to Linearized Problem (4.2).

PROPOSITION 1. Let u = (u1, ..., un) be the solution to (4.2).
(i) Then the alternative a) of Lemma 1 takes place iff uni > 0 for every i =

1, . . . , n, where un = (un1, ..., u
n
n) is the solution to (4.3) with l = n.

Besides, u = un and the components ui of u can be found from (4.4) with
l = n.

(ii) The alternative b) of Lemma 1 takes place iff the positive components of u
form the solution up of Problem (4.3) with l = p, and the number p verifies
the inequality:

1 +
p∑
s=1

(rp+1 − rs)/ds � 0. (4.5)

272 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

In this case the solution u = (u1, ..., un) is described as follows:

ui =
(

1 +
p∑
s=1

(ri − rs)/ds

)
/

(
di

p∑
s=1

1/ds

)
, i = 1, p,

ui = 0, i = p + 1, n.

 (4.6)

Proof. (i) If u ∈ Sol(4.2) then in virtue of the Lagrange rule [1] we have

diui − ri − µi + µ = 0, µiui = 0, i = 1, n. (4.7)

Since ui > 0, one gets µi = 0. Then Eq. (4.7) gives the necessary and sufficient
conditions for the point u to be a solution to (4.3). On the other hand, since the
canonical simplex S is included into the feasible set of Problem (4.3) with l = n,
then un with all positive components turns out to be also a solution to (4.2).

(ii) If u is a solution of (4.2) then one can show similarly to the above that the
positive components of u form a solution to (4.3) with l = p. The inequality (4.5)
can be proved by using (4.7) and the property µp+1 � 0. �
Based on these results we propose two kinds of algorithms for Linearized Problems
Solving, the ‘lower’ and the ‘upper’ respectively. The ‘lower’ algorithm starts with
p = 1, while the ‘upper’ one begins with p = n.

After the analysis of computational experiments we have put up on the ‘upper’
way.

Let us describe the ‘upper’ algorithm step by step.
‘Upper’-algorithm.
Step 0. Set l := n.

Step 1. Find the solution ul to (4.3) by (4.4).
Step 2. (Stopping criterion). If ui � 0 for every i = 1, . . . , l, then go to Step 5.
Step 3. Define the number p = p(l) < l such that

uli > 0 f or i : 1 � i � p,

uli � 0, f or i : p < i � l.

}

Step 4. Set l := p and loop to Step 1.
Step 5. Construct u as follows

u =
{
uli , 1 � i � l,

0, l < i � n.
(4.8)

Stop. u is the solution to (4.2). �
PROPOSITION 2. The ‘upper’ algorithm allows to find the solution of Linearized
Problem (4.2) in a finite number of steps.

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 273

Proof. The finiteness of the algorithm follows from the description of steps
0,2,3,4 and the fact that at step 3 p < l. �

5. Local Search

In this section we present our choice of Local Search Algorithm (LSA) for seeking
a local solution in MCP.

The first approach can be described as follows.
Given a feasible point xs ∈ D, one looks for the next iteration xs+1 ∈ D as an

approximate solution of the following Linearized (at xs) problem

g(x) − 〈∇f (xs), x〉 ↓ min, x ∈ S.

It is clear that the problem can be solved by the ‘upper’ algorithm of preceding
section.

Let us call the above algorithm the L-procedure.
The second approach was proposed by Bomze (1997) and constructs the se-

quence {xs} ⊂ S according to the rule

xs+1
i = xsi

(Axs)i

〈xs, Axs〉 . (5.1)

As shown in Bomze (1997), if the matrix A in the problem

5(x) = 1

2
〈x,Ax〉 ↑ max, x ∈ S,

is symmetric, A = AT , then the sequence {xs} generated by the rule (5.1) and be-
ginning at any feasible point x0, turns out to be relaxing, i.e. 5(xs+1) > 5(xs), s =
0, 1, 2, . . . , and converges to a stationary point. In the sequel we call this method
B-procedure. Note that B-procedure presents only one part of the local search of
I. Bomze in Bomze (1997).

Since the third algorithm allows to find a maximal clique C, in the sequel we
call it C-procedure. In order to describe C-procedure, let begin with

LEMMA 4. Suppose for some point x ∈ S the set

Supp(x) = {i/xi > 0}
is not a clique. There then exists a pair of vertices, say, k and p; k p ∈ Supp(x),
such that the point

y = x + xp(e
k − ep)

is better than x: F(y) > F(x).

274 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Proof. Since Supp(x) is not a clique, then there exist numbers k and p, s.t.
akk = app = 0.5, akp = 0. Suppose, (Ax)k � (Ax)p . Then for y = x+xp(e

k−ep)

we have

F(y) = F(x) + xp((Ax)k − (Ax)p)+ (xp)
2/2.

Since xp > 0, one gets F(y) − F(x) > 0. �
LEMMA 5. (Bomze, 1997) Suppose C is a maximal clique of size k = |C| and
z = 1

k

∑
i∈C

ei ,

S(C) = {x ∈ S/xi = 0, i /∈ C} ⊂ S.

Then F(x) < F(z) for all x ∈ S(C) and x �= z.

Now let us describe C-procedure which consists of two parts.
(1) The first one begins at some point x0 ∈ S and generates the sequence {xm} of
feasible points xm strictly improving the value of the goal function at each iteration:

F(xm) < F(xm+1), m = 0, 1, 2, . . .

The work of the first part is finished when the set Supp(xm) is a clique.
(2) In the second part one constructs a maximal clique C containing Supp(x),
where x is the final point of the first part.

Now let us describe C-procedure step by step.
C-procedure
Step 0. Set m := 0, choose x0 ∈ S.
Step 1. (Stopping criterion) If Supp(xm) is a clique, i.e.

aij = 1, ∀i, j ∈ Supp(xm), i �= j.

then set x := xm and go to step 4.
Step 2. Find k, p from Supp(xm) such that (k, p) /∈ E, i.e.

akp = 0, (Axm)k � (Axm)p. (5.2)

Step 3. Set

xm+1 := xm + xmp (e
k − ep),

m := m+ 1 and loop to Step 1.
Step 4. Find a maximal clique C ⊃ Supp(xm), set k := |C|.
Step 5. Construct the point z := 1

k

∑
i∈C

ei and Stop. �

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 275

PROPOSITION 3. Suppose, some feasible point x0 is given. The sequence {xm}
generated by C-procedure converges to a point z of strict local maximum to Prob-
lem (P) in a finite number of iterations not larger that n. Besides, if the initial point
x0 is not a local maximum to Problem (P), one has the strict improvement, that is

F(x0) < F(z), x0 �= z.

Proof. Due to the constraint
∑n

i=1 xi = 1 one has Supp(xm) �= ∅. On the other
hand it can be readily seen that xm+1 ∈ S and Supp(xm+1) = Supp(xm)\{p}.
Whence one gets the finiteness of C-procedure. The inequality F(x0) < F(z)

follows from Lemmas 4 and 5. �
Further, let move to a more precise description of Step 2 of C-procedure. Assume,
that Supp(xm) = {1, . . . , q} and (Axm)1 � . . . � (Axm)q.

(2)-Algorithm.
Step 0. Set i := 1.
Step 1. Construct the set J = {j/i < j � q, aij = 0}.
Step 2. If J = ∅, then set i := i + 1 and loop to Step 1.
Step 3. Set r := max{j/j ∈ J }, k := i, p := r. Stop.

LEMMA 6. Suppose, Supp(xm) is not a clique. Then for the pair of vertices
(k, p), k, p ∈ Supp(xm), obtained by (2)-algorithm the property (5.2) holds.

The proof is similar to that of Lemma 4. �
Now, turn our attention to Step 5 of C-procedure, which aims to construct a

maximal clique (MC) C including Supp(x). Recall, that according to the definition
a clique C is MC, if C is not contained in a clique of larger cardinality.

The following algorithm enables us to construct such a MC.
(5)-Algorithm.
Step 0. Set C = Supp(x).
Step 1. Construct the set K = {k /∈ C : aki = 1, ∀i ∈ C}.
Step 2. (Stopping criterion). If K = ∅, then Stop. C is the sought-after clique.
Step 3. From the set K choose the number j such that dj = maxk∈K dk , where dk

is the degree of the vertex k in the graph generated by K.
Step 4. Set C = C ∪ {j} and loop to Step 1. �
LEMMA 7. (5)-Algorithm finds MC, containing the set Supp(x), in a finite num-
ber of iterations.

As above, for instance, in the proof of Proposition 3, the proof of Lemma 7 uses
the fact that the set Supp(x) ⊂ {1, . . . , n} is finite.

Now let us consider the results of comparative computational testing of L-, B-,
and C-procedures presented in Table 1. Recall, that L- and B-procedures are not

276 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Table 1.

Graph n Dens F0 Fmax F∗ K

B L C B L C

data_17_1 17 0.279 0.146 0.450 0.450 0.450 0.450 5 5 5

data_17_2 17 0.514 0.256 0.406 0.406 0.416 0.437 – – 3

data_20_1 20 0.326 0.167 0.416 0.416 0.450 0.450 4 4 5

data_20_2 20 0.447 0.225 0.416 0.416 0.416 0.437 3 3 3

data_25_1 25 0.333 0.170 0.431 0.431 0.437 0.450 – – 4

data_25_2 25 0.443 0.222 0.437 0.437 0.437 0.450 4 4 4

data_30_1 30 0.455 0.228 0.260 0.260 0.416 0.437 – – 3

data_30_2 30 0.455 0.228 0.437 0.437 0.437 0.437 4 4 4

data_35_1 35 0.556 0.277 0.425 0.425 0.437 0.450 – – 4

data_35_2 35 0.554 0.276 0.425 0.425 0.437 0.450 – – 4

data_40_1 40 0.510 0.255 0.458 0.458 0.458 0.458 6 6 6

data_40_2 40 0.506 0.253 0.422 0.422 0.437 0.450 – – 4

data_40_3 40 0.506 0.253 0.422 0.422 0.437 0.450 – – 4

data_40_4 40 0.519 0.259 0.380 0.380 0.416 0.450 – – 3

data_45_1 45 0.486 0.243 0.425 0.425 0.437 0.458 – – 4

data_45_2 45 0.449 0.225 0.392 0.380 0.416 0.450 – – 3

data_50_1 50 0.582 0.290 0.425 0.425 0.458 0.458 – – 6

data_50_2 50 0.582 0.290 0.446 0.425 0.458 0.464 – – 6

data_50_3 50 0.581 0.289 0.425 0.425 0.458 0.458 – – 6

data_50_4 50 0.578 0.288 0.425 0.425 0.437 0.458 – – 4

data_50_5 50 0.578 0.288 0.425 0.425 0.437 0.458 – – 4

data_50_6 50 0.574 0.286 0.425 0.425 0.437 0.458 – – 4

data_50_7 50 0.579 0.289 0.425 0.425 0.437 0.464 – – 4

finite and converge to a stationary point. The barycenter x0 = (1/n, . . . , 1/n)T

of the canonical simplex S has been always chosen as initial point. All the test-
ing examples were invented by the first author and can be found by the address:
http://dol.iitam.omsk.net.ru/

In Table 1 n is the dimension of the graph G; Dens stands for the density of
graph; F0, Fmax are the values of the goal function at the initial and final points,
respectively; F∗ is the global maximum of F(x) over S.

Further, the inequality

||xs+1 − xs || � ε, (5.3)

with ε = 10−9 was chosen as the stopping criterion for L- and B - procedures.
If (5.3) is verified then xs+1 was taken as the stationary point z, Fmax := F(z). In

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 277

addition, we considered the set

Supp(z, ε) = {i/zi > ε},
and if this set turns out to be a clique reached by corresponding procedure, then the
size of the clique was denoted by K in the table.

It can be seen from Table 1 that in all test examples C-procedure turned out to
be the most successful.

6. β-Maximization and an approximation of the level surface of f (·)
According to Theorem 1 we need the numbers β− = inf(g, S), β+ = sup(g, S).
Let us calculate them analytically.

It follows from KKT-theorem that the global minimum x; of the convex func-
tion g(x) = 1

2

∑n
1 dix

2
i over the canonical simplex S verifies the equalities:

x;i = µ/di, i = 1, . . . , n,

where the number µ can be found from the equality
∑n

1 xi = 1. Thus,

β− = g(x;) = 1

2
µ2

n∑
1

1/di = 1

2

(
n∑
1

1/di

)−1

.

On the other hand, taking into account that a convex function reaches its maximum
at an extreme point of a feasible set [7], one gets

β+ = 1

2
max
i

{di / 1 � i � n}.

In order to approximate the level surface {x / f (x) = β + ζ } of the function f (·)
defined in (3.2), (3.6) consider the set of directions:

D = {e1, . . . , en ∈ Rn}.
Then the approximation may be constructed as follows:

A(ζ, β) = {y1, . . . , yn / f (yi) = β + ζ },
where

yi = λie
i . (6.1)

Since f (x) = 1
2〈x,A1x〉, it is obvious that

λi = λi(β) =
(

2(β + ζ)

di + 0.5

) 1
2

. (6.2)

278 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Note, the function λi(β) is monotonously increasing over [β−, β+].
Now let us look at the behavior of the solution of Linearized Problem:

g(x) − 〈∇f (yi), x〉 ↓ min, x ∈ S, (PLi)

when the parameter β, f (yi) = β + ζ , is moving over [β−, β+].
Further, let us denote (the neighborhood of a vertex i)

Vi = {j ∈ {1, . . . , n} / aGij = 1}.
PROPOSITION 4. Let z be a local maximum of F(·) over S, ζ = F(z), and ui be
a solution to Linearized Problem (PLi) with yi satisfying (6.1), (6.2) and verifying

g(yi) � β (6.3)

for some β ∈ [β−, β+].
In this case, the structure of the solution ui is as follows.

(a) If λ−
i � λi < λ+

i , where

λ−
i =

di + 0.5

di
+
∑
j∈Vi

1/di

−1

, (6.4)

λ+
i = di

di − 0.5
, (6.5)

then uij > 0 only for j ∈ Vi and j = i.
Besides,

uii = (1 + λi(di − 0.5)c0
i)/dici; (6.6)

uij = (1 − λi(di − 0.5)/di)/djci; (6.7)

where

c0
i =

∑
j∈Vi

1/dj ; ci = c0
i + 1/di . (6.8)

(b) If λi � λ+, then uii > 0 and uij = 0 ∀j �= i.
Proof. 1) Due to (6.1) and (6.2), respectively, one has

g(yi) = 1

2
diλ

2
i , β = λ2

i

2di + 1

4
− ζ.

Then, the inequality g(yi) � β is equivalent to

λi � 2
√
ζ . (6.9)

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 279

It is well-known that if z is a local solution then ζ = 1
2 − 1

4K , where K is the
cardinality of the maximal clique corresponding to z. Hence, ζ > 1

4 , and from (6.9)
it follows

λi > 1, i = 1, . . . , n. (6.10)

(2) Without loss of generality one can set i := 1, r := ∇f (y1) = λ1A1e
1 = λ1a

1.
Then, one gets

a1
j =

d1 + 0.5, if j = 1,
1, if j ∈ V1,

0, otherwise

Let V1 = {2, . . . , p}, where p = d1 + 1. Then we have

r1 � r2 � . . . � rn, (6.11)

or more exactly

r2 = . . . = rp = λ1, rp+1 = . . . = rn = 0. (6.12)

(3) On the other hand, from Lemmas 1 and 2 we have only three alternatives:
(i) uj > 0, j = 1, . . . , n;
(ii) uj > 0, j = 1, . . . , p; uj = 0, p < j � n.

(iii) u1 > 0, uj = 0, j � 2.
(i) In this case due to Proposition 1 (see (4.6)) the following system of inequalities
takes place:

1 +
p∑
s=1

(rj − rs)/ds > 0, j = 1, . . . , n. (6.13)

Due to (6.11)–(6.12) the system (6.13) is equivalent to only one inequality

1 −
p∑
s=1

rs/ds > 0,

or, which is the same,

1 − λ1

(
(d1 + 0.5)/d1 +

p∑
s=2

1/ds

)
> 0.

So, it is clear that the case i) takes place iff 0 < λ1 < λ−
1 , where λ−

1 is defined
in (6.4). But it can be easily seen, that λ−

1 < 1. So, due to (6.10) he case i) never
takes place.

280 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

(ii) As above, due to (4.6) we have the system of inequalities

1 +
p∑
s=1

(rj − rs)/ds > 0, j = 1, . . . , p.

which is equivalent to one inequality

1 +
p−1∑
s=1

(rp − rs)/ds > 0.

Furthermore, since

1 +
p−1∑
s=1

(rp − rs)/ds = 1 + (rp − r1)/d1 = 1 − λ1 ((d1 − 0.5)/d1) = 1 − λ1/λ
+
1 ,

it is clear, that the case (ii) takes place when λ1 < λ+
1 (sf. (6.5)). Note that λ+

1 > 1,
therefore the case a) is possible.

(iii) In this case it follows from (4.5)

1 + (r2 − r1)/d1 � 0,

whence one deduces λ1 � λ+
1 . �

It is clear that there is no need to seek yi in the form (6.1), and one can avoid
the verification of (6.3), since we have the inequality

1

2
diλ

2
i � β

instead. In the light of the preceding results, one can transform �-strategy into the
form, called in the sequel the �M-algorithm. The latter differs from �-strategy
(see Section 3) only by Steps 3 and 4.
Step 3. Set λi = λi(β) according to (6.2).
Step 4. Introduce the set

Ik = Ik(β) = {i ∈ {1, ..., Nk} / 1

2
diλ

2
i � β, λi < λ+

i }.

�M-algorithm was coded in the Borland Pascal and was tested on PC Pen-
tium 166 MMX. The results of the computational experiments are summarized in
Table 2, where K∗ is the corresponding cardinality of a maximum clique. Since for
all considered examples the obtained cardinality of the maximal clique turned out
to be equal to the maximum clique cardinality, we decided not to place the column
K into the table. Further, St is the number of local maximum obtained and PL

stands for the number of the Linearized Problem solved during the simulation. As

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 281

Table 2.

Graph K∗ St PL Time (s)

� �M �D � �M �D � �M �D
data17_1 5 1 1 1 201 85 51 0.22 0.16 0.05

data17_2 4 2 2 2 44 19 49 0.11 0.11 0.06

data20_2 5 1 1 1 163 41 60 0.33 0.16 0.06

data20_2 4 2 2 2 177 39 58 0.38 0.16 0.11

data25_1 5 2 2 2 227 49 73 0.55 0.28 0.16

data25_2 5 2 2 2 213 35 73 0.61 0.27 0.17

data30_1 4 2 2 2 101 13 88 0.49 0.28 0.27

data30_2 4 1 1 1 303 52 90 0.88 0.39 0.27

data35_1 5 2 2 2 914 35 103 3.68 0.55 0.49

data35_2 5 2 2 2 919 35 103 3.68 0.55 0.50

data40_1 6 1 1 1 526 30 120 2.58 0.61 0.60

data40_2 5 2 2 2 548 40 118 2.64 0.82 0.60

data40_3 5 2 2 2 548 40 120 2.64 0.82 0.66

data40_4 5 3 3 3 1370 53 120 5.93 1.10 0.65

data45_1 6 2 2 3 544 45 131 3.46 1.05 0.83

data45_2 5 2 2 3 1759 28 135 8.62 0.77 0.71

data50_1 6 1 1 1 661 42 150 4.89 1.16 1.10

data50_2 7 2 2 2 793 41 148 6.32 1.32 1.04

data50_3 6 1 1 1 673 42 150 5.05 1.15 1.16

data50_4 6 3 3 3 769 57 148 6.05 2.03 1.10

data50_5 6 3 3 3 811 61 147 6.31 2.09 1.05

data50_6 6 3 3 3 787 56 147 6.10 1.92 1.10

data50_7 7 3 3 4 821 43 145 6.37 1.65 0.99

one can see from Table 2, the preceding analytical investigations have no impact on
the obtained solutions, which are the same for �- and �M-algorithms. The number
St is also without change.

Instead, the number PL of Linearized Problems solved by �M is consider-
ably reduced w.r.t. �-algorithm. For instance, in the example ’data45_2.clq’ PL
decreased from 1759 to 28. The solving time also changes correspondingly.

To summarize, one can say that on the average �M-algorithm allows to throw
away 9 of 10 PL to be solved during the unidimensional maximization ηk(β) over
[β−, β+].

282 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

7. Further improvement of �-strategy and testing on DIMACS benchmark
graphs

Impressed by the improvement which �M-strategy gives comparing with the start-
ing version of Global Search, we decided to work on the scheme refinement. Using
the inequality (6.3) and Proposition 4 we can estimate the boundary for λi as
follows

γ � λi � λ+
i ,

where

γ = γ (ζ)
�= 2

√
ζ (7.1)

Then the following question naturally arises. May one avoid the choice of the
parameter β ∈ [β−, β+] by replacing it with a direct choice of λi? When such
λi is known, β can be calculated as follows

β = λ2
i (di + 0.5)/2 − ζ. (7.2)

Analysing �M-algorithm, we see that one needs the value of β only on step 7 in
order to find wi : f (wi) = β+ζk. Howerver, for quadratic cases the level problem
is analytically solvable, and according to Strekalovsky (1993, 2000), we have

wi = µiv
i =

(
β + ζ

f (vi)

) 1
2

vi = λi

(
di + 0.5

2f (vi)

) 1
2

vi. (7.3)

Thus, it is possible to carry out Steps 0–7 without knowing the value of β. But
the crucial obstacle is the necessity to change the stopping criterion on Step 8
(cf.(3.7)). To get over, observe, that in reality there is no need to know the value
of ηk(β), but only the sign. Therefore, we have organized a grid on the segment
[γ (ηk), λ+

i] putting @λi = (λ+
i − γ (ζk))/m for m = 2, m = 3, and as a result,

obtained the following algorithm.
Step 0. Set k := 0, xk := x0.

Step 1. Starting at xk ∈ S obtain by C-procedure a point zk ∈ S of local max-
imum to (P). Set ζk := F(zk).

Step 2. Compute γ = γ (ζk) and λ+
i according to (6.5) and (7.1).

Step 3. Choose an integer m > 1. Set @λi := (λ+
i − γ)/m, l := 0.

Step 4. Set λi := γ + l@λi .
Step 5. Compute the solution ui ∈ S by (6.6)–(6.8).
Step 6. Starting at ui obtain by C-procedure a point vi ∈ S of local maximum to

(P).
Step 7. Compute β and wi according to (7.2) and (7.3), respectively.
Step 8. If 〈∇f (wi), vi − wi〉 + β − g(vi) > 0, then set k := k + 1, zk :=

vi, ζk := F(zk) and go to Step 10.

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 283

Table 3.

Graph n Dens K K∗ Rel St Time

% (h:min:s)

MANN_a9 45 0.9273 16 16 0 1 00:00.99

hamming6_2 64 0.9048 32 32 0 1 00:03.13

hamming6_3 64 0.3492 4 4 0 1 00:00.33

hamming8-2 256 0.9686 128 128 0 1 11:43.70

hamming8-4 256 0.6392 16 16 0 1 03:25.53

johnson8_2_4 28 0.5556 4 4 0 1 00:00.11

johnson8_4_4 70 0.7681 14 14 0 1 00:03.41

johnson16_2_4 120 0.7647 8 8 0 1 00:21.37

keller4 171 0.6491 11 11 0 2 00:45.97

c_fat200-1 200 0.0771 12 12 0 1 00:00.44

c_fat200-2 200 0.1626 24 24 0 1 00:01.76

c_fat200-5 200 0.4258 58 58 0 1 00:17.41

san200_0.7_1 200 0.7000 30 30 0 2 01:49.79

san200_0.7_2 200 0.7000 18 18 0 4 01:54.03

san200_0.9_1 200 0.9000 70 70 0 2 03:42.34

san200_0.9_2 200 0.9000 60 60 0 5 03:49.59

san200_0.9_3 200 0.9000 44 44 0 2 03:52.56

sanr200_0.7 200 0.6969 18 18 0 3 01:48.14

sanr200_0.9 200 0.8976 41 � 42 – 4 03:40.36

brock200_1 200 0.7454 20 21 5 3 02:11.76

brock200_2 200 0.4963 11 12 8 4 00:40.32

brock200_3 200 0.6054 14 15 7 4 01:12.94

brock200_4 200 0.6577 15 17 12 2 01:30.68

p_hat300-1 300 0.2438 8 8 0 3 00:37.29

_hat300-2 300 0.4889 25 25 0 6 04:05.13

p_hat300-3 300 0.7445 34 36 6 5 11:44.20

Step 9. If l < (m− 1), set l := l + 1, and go to Step 4.
Step 10. If i < n, then set i := i + 1, and go to Step 2.
Step 11. If i = n, then Stop. �

In the sequel we call this variant of �-strategy �D-algorithm. �D was coded
and tested in the same manner as �M. To estimate the efficiency of the proposed
approach, extensive simulations were carried out, first, on the test examples and,
second, on DIMACS benchmark graphs. Table 3 contains the results of our testing
for �M- and �D-algorithms. One stresses that �D-algorithm also obtained the
global solution in all the examples.

284 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Table 4.

Graph n Dens K K∗ Rel St Time

(%) (h:min:s)

MANN_a27 378 0.9901 125 126 1 1 1:27:21.05

johnson32-2-4 496 0.8788 16 16 0 1 1:43:19.66

p_hat500-1 500 0.2531 9 9 0 3 0:04:15.57

p_hat500-2 500 0.5046 35 36 3 6 0:33:45.81

p_hat500-3 500 0.7519 49 � 49 – 3 0:26:41.88

p_hat700-1 700 0.2493 11 11 0 5 0:17:58.12

p_hat700-2 700 0.4976 44 44 0 4 2:12:25.07

p_hat700-3 700 0.7480 62 � 62 – 7 6:08:32.32

keller_5 776 0.7515 25 27 1 7 8:22:29.07

c_fat500-1 500 0.0357 14 14 0 1 0:00:02.42

_fat500-2 500 0.0733 26 26 0 1 0:00:09.17

c_fat500-5 500 0.1859 64 64 0 1 0:01:06.68

c_fat500-10 500 0.3738 126 126 0 1 0:06:36.94

san400_0.5_1 400 0.5000 13 13 0 2 0:10:58.94

san400_0.7_1 400 0.7000 40 40 0 3 0:28:49.71

san400_0.7_2 400 0.7000 30 30 0 2 0:28:09.01

san400_0.7_3 400 0.7000 19 22 14 4 0:28:53.78

san400_0.9_1 400 0.9000 100 100 0 5 1:00:28.49

sanr400_0.5 400 0.5011 12 13 8 3 0:10:10.34

sanr400_0.7 400 0.7001 20 � 21 – 2 0:27:03.43

brock400_1 400 0.7492 24 27 11 4 0:34:10.59

brock400_2 400 0.7492 24 29 17 3 0:34:30.37

brock400_3 400 0.7479 24 31 23 4 0:33:52.41

brock400_4 400 0.7489 24 33 27 3 0:34:05.37

brock800_1 800 0.6493 21 23 9 4 6:11:13.76

rock800_2 800 0.6513 20 24 17 3 6:10:06.53

brock800_3 800 0.6487 20 25 20 4 6:08:53.25

brock800_4 800 0.6497 20 26 23 4 6:13:03.25

Note, in Tables 3 and 4 Rel stands for

K; − K

K;

× 100. (7.4)

Recall that in all examples �D-algorithm was run by starting the process from
the vector x(0) = (1/n, . . . , 1/n)T , which corresponds to the barycenter of the
domain S.

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 285

Table 5.

Graph n Dens K∗ K

COM M/S CBH �D
c_fat200-1 200 0.077 12 12 8 12 12

c_fat200-2 200 0.163 24 24 24 24 24

c_fat200-5 200 0.426 58 58 58 58 58

c_fat500-1 500 0.036 14 14 14 14 14

c_fat500-2 500 0.073 26 26 26 26 26

c_fat500-5 500 0.186 64 64 64 64 64

c_fat500-10 500 0.374 126 126 126 126 126

p_hat300-1 300 0.244 8 6 6 8 8

p_hat300-2 300 0.489 25 22 24 25 25

p_hat300-3 300 0.744 36 32 33 36 34

p_hat500-1 500 0.253 9 8 8 9 9

p_hat500-2 500 0.505 36 33 35 35 35

p_hat500-3 500 0.752 � 49 47 48 49 49

p_hat700-1 700 0.249 11 7 9 11 11

p_hat700-2 700 0.497 44 43 43 44 44

_hat700-3 700 0.748 � 62 57 59 60 62

Table 6.

Graph n Dens K∗ K

COM M/S CBH �D
san200_0.7_1 200 0.700 30 15 15 15 30

san200_0.7_2 200 0.700 18 12 12 12 18

san200_0.9_1 200 0.900 70 45 45 46 70

san200_0.9_2 200 0.900 60 36 35 36 60

san200_0.9_3 200 0.900 44 32 33 30 44

san400_0.5_1 400 0.500 13 7 7 8 13

san400_0.7_1 400 0.700 40 20 20 20 40

san400_0.7_2 400 0.700 30 15 15 15 30

san400_0.7_3 400 0.700 22 12 12 14 19

san400_0.9_1 400 0.900 100 40 55 50 100

sanr200_0.7 200 0.697 18 14 16 18 18

sanr200_0.9 200 0.898 � 42 37 40 41 41

sanr400_0.5 400 0.501 13 11 11 12 12

sanr400_0.7 400 0.700 � 21 18 18 20 20

286 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

Table 7.

Graph n Dens K∗ K

COM M/S CBH �D

MANN_a9 45 0.927 16 12 12 16 16

MANN_a27 378 0.990 126 117 117 121 125

keller4 171 0.649 11 7 7 10 11

keller_5 776 0.751 27 15 15 21 25

brock200_1 200 0.745 21 17 18 20 20

brock200_2 200 0.496 12 8 8 12 11

brock200_3 200 0.605 15 9 10 14 14

brock200_4 200 0.658 17 12 13 16 15

brock400_1 400 0.748 27 21 21 23 24

brock400_2 400 0.749 29 20 22 24 24

brock400_3 400 0.748 31 18 20 23 24

brock400_4 400 0.749 33 19 21 24 24

brock800_1 800 0.649 23 16 17 20 21

brock800_2 800 0.651 24 15 17 19 20

brock800_3 800 0.649 25 16 18 20 20

brock800_4 800 0.650 26 15 17 19 20

As one can see from Tables 2–4 the results obtained are rather encouraging since
the average solving time is really reduced (2–3 times w.r.t. �-algorithm, Table 2).

Therefore, we decided to test �D-algorithm on DIMACS benchmark graphs of
dimension up to 800. As for the solving time, for the most of the problems of size
up to 500 it varies from 30 to 40 min on the average, while the maximal time is 1
h. 43 min. For the size of 700–800 the solving time balances between 17 min and
8 h 22 min, which is apparently suitable considering the PC computer used.

As the first conclusion on disadvantages of �D-algorithm, one may say, that
�D did not find the global solution in the dense graphs with relatively small
cardinality of maximum clique (Tables 3 and 4).

In order to compare the computational efficiency of the approach based on
GOC with other approaches, we used the paper of Bomze et al. (1997), where one
can find the computational results of solving MCP by three different approaches.
Besides, all three methods, as well as ours, used a reducing of the combinatorial
problem to a continuous quadratic maximization over the canonical simplex S.

The first method is due to Bomze (1997) and was denoted by COM. The second
one (M/S) is due to Pelillo (1995) and based upon the non-regularized version
of Motzkin-Straus relaxation. Finally, the third approach (CBH, [6]) is developed
upon the powerful ‘continuous based heuristic.’

ON SOLVING THE MAXIMUM CLIQUE PROBLEM 287

As Tables 5–7 show, the computational results obtained by �D are quite en-
couraging since there are no examples where �D-algorithm conceded to COM
and M/S procedures, while there are only three examples in which �D did worse
than CBH.

We have to point out (Table 6), that for Sanchis’ graphs �D was successful to
reach the maximal cliques of cardinality almost 1.5–2 times as large as those found
by other methods.

So, as to attainability of global solutions, �D-algorithm shows itself as rather
competitive w.r.t. the procedures based upon different ideologies. Finally, we guess
that the possibilities of �D are not exhausted.

8. Conclusion

In this paper we considered the well-known combinatorial problem of finding a
maximum clique in the regularized continuous form due to Motzkin/Straus/Bomze.

For solving the problem we applied an approach based on Global Optimality
Conditions for d.c. maximization.

Developing the proposed Global Search Strategy, we obtained almost discrete
version of GS-algorithm.

The extensive computational experiments were carried out on the test examples
and the DIMACS benchmark graphs. The obtained computational results stimulate
the future investigations.

Acknowledgement

The investigation was carried out under financial support of RFBR (the grant num-
ber 98-01-00043

References

1. Bazaraa, M.S. and Shetty, C.M. (1979), Nonlinear Programming Theory and Algorithms, John
Wiley and Sons, New York.

2. Bomze, I. (1997), Evolution towards the maximum clique, Journal of Global Optimization, 10,
143–164.

3. Bomze, I.M., Budinich, M., Pardalos, P.M. and Pelillo, M. (1999), The maximum clique prob-
lem, In: Du, D.-Z. and Pardalos, P.M. (eds.), Handbook of Combinatorial Optimization, Suppl.
Vol. A., Kluwer Academic Publishers, Boston, pp. 1–74.

4. Bomze, I.M., Pelillo, M. and Giacomini, R. (1997), Evolutionary Approach to the Maximum
Clique Problem: Empirical Evidence on a Large Scale, In: Bomze, I.M., Csendes, T., Horst,
R. and Pardalos, P.M. (eds.), Developments in Global Optimization, 18, Kluwer Academic
Publishers, Dordrecht, pp. 95–108.

5. Garey, M. and Johnson, D. (1979), Computer and Intractability, A Guide to The Theory of
NP-Completeness, Freeman, San Francisco.

6. Gibbons, L.E., Hearn, D.W. and Pardalos P.M. (1995), A continuous based heuristic for the
maximum clique problem, In: Johnson, D.S., Trick, M. (eds.), Clique, Graph Coloring, and
Satisfiability: Second DIMACS Implementation Challenge, 26, 103–124.

288 ANTONINA KUZNETSOVA AND ALEXANDER STREKALOVSKY

7. Horst, R., Pardalos, P.M. and Thoai, V. (1995), Introduction to Global Optimization, 3, Kluwer,
Dordrecht.

8. Motzkin, T.S. and Straus, E.G. (1965), Maxima for graphs and a new proof of a theorem of
Turán, Cand. J. Math., 17, 533–540.

9. Pelillo, M. (1995), Relaxation labeling networks for the maximum clique problem, Journal of
Artificial Neural Networks, 2, 313–327.

10. Pelillo, M. and Jagota A. (1995), Feasible and infeasible maxima in a quadratic program for
maximum clique, Journal of Artificial Neural Networks, 2, 411–420.

11. Strekalovsky, A.S. (1997), On Global Optimality Conditions for D.C. Programming Problems,
Irkutsk University Press, Irkutsk.

12. Strekalovsky, A.S. (1993), The search for a global maximum of a convex functional on an
admissible set, Comput. Math. and Math. Physics, 33, 315–328, Pergamon Press.

13. Strekalovsky, A.S. and Tsevendorj, I. (1998), Testing the �-strategy for a Reverse Convex
Problem, Journal of Global Optimization 13, 61–74.

14. Kuznetsova, A.A., Strekalovsky A.S. and Tsevendorj I. (1999), An approach to the solution of
integer optimization problem, Comput. Math. and Math. Physics, 39, 6–13.

15. Strekalovsky A.S., (2000) One way to Construct a Global Search Algorithm for d.c. Minim-
ization Problems In: Pillo, G. Di., Giannessi, F. (eds.), Nonlinear Optimization and Related
Topics, 36, Kluwer, Dordrecht, pp. 429–443.

